Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(p^{2}-4p\right)
Factor out 5.
p\left(p-4\right)
Consider p^{2}-4p. Factor out p.
5p\left(p-4\right)
Rewrite the complete factored expression.
5p^{2}-20p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-20\right)±20}{2\times 5}
Take the square root of \left(-20\right)^{2}.
p=\frac{20±20}{2\times 5}
The opposite of -20 is 20.
p=\frac{20±20}{10}
Multiply 2 times 5.
p=\frac{40}{10}
Now solve the equation p=\frac{20±20}{10} when ± is plus. Add 20 to 20.
p=4
Divide 40 by 10.
p=\frac{0}{10}
Now solve the equation p=\frac{20±20}{10} when ± is minus. Subtract 20 from 20.
p=0
Divide 0 by 10.
5p^{2}-20p=5\left(p-4\right)p
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 4 for x_{1} and 0 for x_{2}.