Solve for A
\left\{\begin{matrix}A=\frac{G}{5n+B}\text{, }&n\neq -\frac{B}{5}\\A\in \mathrm{R}\text{, }&G=0\text{ and }n=-\frac{B}{5}\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=-5n+\frac{G}{A}\text{, }&A\neq 0\\B\in \mathrm{R}\text{, }&G=0\text{ and }A=0\end{matrix}\right.
Share
Copied to clipboard
5nA+BA=G
Add BA to both sides.
\left(5n+B\right)A=G
Combine all terms containing A.
\frac{\left(5n+B\right)A}{5n+B}=\frac{G}{5n+B}
Divide both sides by 5n+B.
A=\frac{G}{5n+B}
Dividing by 5n+B undoes the multiplication by 5n+B.
G-BA=5nA
Swap sides so that all variable terms are on the left hand side.
-BA=5nA-G
Subtract G from both sides.
\left(-A\right)B=5An-G
The equation is in standard form.
\frac{\left(-A\right)B}{-A}=\frac{5An-G}{-A}
Divide both sides by -A.
B=\frac{5An-G}{-A}
Dividing by -A undoes the multiplication by -A.
B=-5n+\frac{G}{A}
Divide 5nA-G by -A.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}