Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

5\left(m^{2}-2m\right)
Factor out 5.
m\left(m-2\right)
Consider m^{2}-2m. Factor out m.
5m\left(m-2\right)
Rewrite the complete factored expression.
5m^{2}-10m=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-10\right)±10}{2\times 5}
Take the square root of \left(-10\right)^{2}.
m=\frac{10±10}{2\times 5}
The opposite of -10 is 10.
m=\frac{10±10}{10}
Multiply 2 times 5.
m=\frac{20}{10}
Now solve the equation m=\frac{10±10}{10} when ± is plus. Add 10 to 10.
m=2
Divide 20 by 10.
m=\frac{0}{10}
Now solve the equation m=\frac{10±10}{10} when ± is minus. Subtract 10 from 10.
m=0
Divide 0 by 10.
5m^{2}-10m=5\left(m-2\right)m
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 0 for x_{2}.