Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

5m=m^{2}
Multiply m and m to get m^{2}.
5m-m^{2}=0
Subtract m^{2} from both sides.
m\left(5-m\right)=0
Factor out m.
m=0 m=5
To find equation solutions, solve m=0 and 5-m=0.
5m=m^{2}
Multiply m and m to get m^{2}.
5m-m^{2}=0
Subtract m^{2} from both sides.
-m^{2}+5m=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-5±\sqrt{5^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±5}{2\left(-1\right)}
Take the square root of 5^{2}.
m=\frac{-5±5}{-2}
Multiply 2 times -1.
m=\frac{0}{-2}
Now solve the equation m=\frac{-5±5}{-2} when ± is plus. Add -5 to 5.
m=0
Divide 0 by -2.
m=-\frac{10}{-2}
Now solve the equation m=\frac{-5±5}{-2} when ± is minus. Subtract 5 from -5.
m=5
Divide -10 by -2.
m=0 m=5
The equation is now solved.
5m=m^{2}
Multiply m and m to get m^{2}.
5m-m^{2}=0
Subtract m^{2} from both sides.
-m^{2}+5m=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-m^{2}+5m}{-1}=\frac{0}{-1}
Divide both sides by -1.
m^{2}+\frac{5}{-1}m=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
m^{2}-5m=\frac{0}{-1}
Divide 5 by -1.
m^{2}-5m=0
Divide 0 by -1.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-5m+\frac{25}{4}=\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
\left(m-\frac{5}{2}\right)^{2}=\frac{25}{4}
Factor m^{2}-5m+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
m-\frac{5}{2}=\frac{5}{2} m-\frac{5}{2}=-\frac{5}{2}
Simplify.
m=5 m=0
Add \frac{5}{2} to both sides of the equation.