Solve for m (complex solution)
m=\frac{-\sqrt{2z}+6}{5}
Solve for m
m=\frac{-\sqrt{2z}+6}{5}
z\geq 0
Solve for z
z=\frac{\left(6-5m\right)^{2}}{2}
6-5m\geq 0
Solve for z (complex solution)
z=\frac{\left(6-5m\right)^{2}}{2}
m=\frac{6}{5}\text{ or }arg(6-5m)<\pi
Share
Copied to clipboard
5m=6-\sqrt{2z}
Subtract \sqrt{2z} from both sides.
5m=-\sqrt{2z}+6
The equation is in standard form.
\frac{5m}{5}=\frac{-\sqrt{2z}+6}{5}
Divide both sides by 5.
m=\frac{-\sqrt{2z}+6}{5}
Dividing by 5 undoes the multiplication by 5.
5m=6-\sqrt{2z}
Subtract \sqrt{2z} from both sides.
5m=-\sqrt{2z}+6
The equation is in standard form.
\frac{5m}{5}=\frac{-\sqrt{2z}+6}{5}
Divide both sides by 5.
m=\frac{-\sqrt{2z}+6}{5}
Dividing by 5 undoes the multiplication by 5.
\sqrt{2z}+5m-5m=6-5m
Subtract 5m from both sides of the equation.
\sqrt{2z}=6-5m
Subtracting 5m from itself leaves 0.
2z=\left(6-5m\right)^{2}
Square both sides of the equation.
\frac{2z}{2}=\frac{\left(6-5m\right)^{2}}{2}
Divide both sides by 2.
z=\frac{\left(6-5m\right)^{2}}{2}
Dividing by 2 undoes the multiplication by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}