Evaluate
\frac{202}{65}+\frac{251}{65}i\approx 3.107692308+3.861538462i
Real Part
\frac{202}{65} = 3\frac{7}{65} = 3.1076923076923078
Share
Copied to clipboard
5i\times \frac{\left(1-i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}-13\times \frac{1-4i}{5+12i}
Multiply both numerator and denominator of \frac{1-i}{3-4i} by the complex conjugate of the denominator, 3+4i.
5i\times \frac{7+i}{25}-13\times \frac{1-4i}{5+12i}
Do the multiplications in \frac{\left(1-i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
5i\left(\frac{7}{25}+\frac{1}{25}i\right)-13\times \frac{1-4i}{5+12i}
Divide 7+i by 25 to get \frac{7}{25}+\frac{1}{25}i.
-\frac{1}{5}+\frac{7}{5}i-13\times \frac{1-4i}{5+12i}
Multiply 5i and \frac{7}{25}+\frac{1}{25}i to get -\frac{1}{5}+\frac{7}{5}i.
-\frac{1}{5}+\frac{7}{5}i-13\times \frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)}
Multiply both numerator and denominator of \frac{1-4i}{5+12i} by the complex conjugate of the denominator, 5-12i.
-\frac{1}{5}+\frac{7}{5}i-13\times \frac{-43-32i}{169}
Do the multiplications in \frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)}.
-\frac{1}{5}+\frac{7}{5}i-13\left(-\frac{43}{169}-\frac{32}{169}i\right)
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
-\frac{1}{5}+\frac{7}{5}i-\left(-\frac{43}{13}-\frac{32}{13}i\right)
Multiply 13 and -\frac{43}{169}-\frac{32}{169}i to get -\frac{43}{13}-\frac{32}{13}i.
-\frac{1}{5}+\frac{7}{5}i+\left(\frac{43}{13}+\frac{32}{13}i\right)
The opposite of -\frac{43}{13}-\frac{32}{13}i is \frac{43}{13}+\frac{32}{13}i.
\frac{202}{65}+\frac{251}{65}i
Add -\frac{1}{5}+\frac{7}{5}i and \frac{43}{13}+\frac{32}{13}i to get \frac{202}{65}+\frac{251}{65}i.
Re(5i\times \frac{\left(1-i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}-13\times \frac{1-4i}{5+12i})
Multiply both numerator and denominator of \frac{1-i}{3-4i} by the complex conjugate of the denominator, 3+4i.
Re(5i\times \frac{7+i}{25}-13\times \frac{1-4i}{5+12i})
Do the multiplications in \frac{\left(1-i\right)\left(3+4i\right)}{\left(3-4i\right)\left(3+4i\right)}.
Re(5i\left(\frac{7}{25}+\frac{1}{25}i\right)-13\times \frac{1-4i}{5+12i})
Divide 7+i by 25 to get \frac{7}{25}+\frac{1}{25}i.
Re(-\frac{1}{5}+\frac{7}{5}i-13\times \frac{1-4i}{5+12i})
Multiply 5i and \frac{7}{25}+\frac{1}{25}i to get -\frac{1}{5}+\frac{7}{5}i.
Re(-\frac{1}{5}+\frac{7}{5}i-13\times \frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)})
Multiply both numerator and denominator of \frac{1-4i}{5+12i} by the complex conjugate of the denominator, 5-12i.
Re(-\frac{1}{5}+\frac{7}{5}i-13\times \frac{-43-32i}{169})
Do the multiplications in \frac{\left(1-4i\right)\left(5-12i\right)}{\left(5+12i\right)\left(5-12i\right)}.
Re(-\frac{1}{5}+\frac{7}{5}i-13\left(-\frac{43}{169}-\frac{32}{169}i\right))
Divide -43-32i by 169 to get -\frac{43}{169}-\frac{32}{169}i.
Re(-\frac{1}{5}+\frac{7}{5}i-\left(-\frac{43}{13}-\frac{32}{13}i\right))
Multiply 13 and -\frac{43}{169}-\frac{32}{169}i to get -\frac{43}{13}-\frac{32}{13}i.
Re(-\frac{1}{5}+\frac{7}{5}i+\left(\frac{43}{13}+\frac{32}{13}i\right))
The opposite of -\frac{43}{13}-\frac{32}{13}i is \frac{43}{13}+\frac{32}{13}i.
Re(\frac{202}{65}+\frac{251}{65}i)
Add -\frac{1}{5}+\frac{7}{5}i and \frac{43}{13}+\frac{32}{13}i to get \frac{202}{65}+\frac{251}{65}i.
\frac{202}{65}
The real part of \frac{202}{65}+\frac{251}{65}i is \frac{202}{65}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}