Factor
\left(h-5\right)\left(5h+1\right)
Evaluate
\left(h-5\right)\left(5h+1\right)
Share
Copied to clipboard
a+b=-24 ab=5\left(-5\right)=-25
Factor the expression by grouping. First, the expression needs to be rewritten as 5h^{2}+ah+bh-5. To find a and b, set up a system to be solved.
1,-25 5,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -25.
1-25=-24 5-5=0
Calculate the sum for each pair.
a=-25 b=1
The solution is the pair that gives sum -24.
\left(5h^{2}-25h\right)+\left(h-5\right)
Rewrite 5h^{2}-24h-5 as \left(5h^{2}-25h\right)+\left(h-5\right).
5h\left(h-5\right)+h-5
Factor out 5h in 5h^{2}-25h.
\left(h-5\right)\left(5h+1\right)
Factor out common term h-5 by using distributive property.
5h^{2}-24h-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
h=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 5\left(-5\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\left(-24\right)±\sqrt{576-4\times 5\left(-5\right)}}{2\times 5}
Square -24.
h=\frac{-\left(-24\right)±\sqrt{576-20\left(-5\right)}}{2\times 5}
Multiply -4 times 5.
h=\frac{-\left(-24\right)±\sqrt{576+100}}{2\times 5}
Multiply -20 times -5.
h=\frac{-\left(-24\right)±\sqrt{676}}{2\times 5}
Add 576 to 100.
h=\frac{-\left(-24\right)±26}{2\times 5}
Take the square root of 676.
h=\frac{24±26}{2\times 5}
The opposite of -24 is 24.
h=\frac{24±26}{10}
Multiply 2 times 5.
h=\frac{50}{10}
Now solve the equation h=\frac{24±26}{10} when ± is plus. Add 24 to 26.
h=5
Divide 50 by 10.
h=-\frac{2}{10}
Now solve the equation h=\frac{24±26}{10} when ± is minus. Subtract 26 from 24.
h=-\frac{1}{5}
Reduce the fraction \frac{-2}{10} to lowest terms by extracting and canceling out 2.
5h^{2}-24h-5=5\left(h-5\right)\left(h-\left(-\frac{1}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -\frac{1}{5} for x_{2}.
5h^{2}-24h-5=5\left(h-5\right)\left(h+\frac{1}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5h^{2}-24h-5=5\left(h-5\right)\times \frac{5h+1}{5}
Add \frac{1}{5} to h by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
5h^{2}-24h-5=\left(h-5\right)\left(5h+1\right)
Cancel out 5, the greatest common factor in 5 and 5.
x ^ 2 -\frac{24}{5}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = \frac{24}{5} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{12}{5} - u s = \frac{12}{5} + u
Two numbers r and s sum up to \frac{24}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{24}{5} = \frac{12}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{12}{5} - u) (\frac{12}{5} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{144}{25} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{144}{25} = -\frac{169}{25}
Simplify the expression by subtracting \frac{144}{25} on both sides
u^2 = \frac{169}{25} u = \pm\sqrt{\frac{169}{25}} = \pm \frac{13}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{12}{5} - \frac{13}{5} = -0.200 s = \frac{12}{5} + \frac{13}{5} = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}