Solve for h
h=-\frac{2xy+6x-uy-2y-3u-3}{5\left(y+3\right)}
y\neq -3
Solve for u
u=\frac{2xy+6x+5hy-2y+15h-3}{y+3}
y\neq -3
Graph
Share
Copied to clipboard
5h\left(y+3\right)+2x\left(y+3\right)-\left(3+2y\right)=u\left(y+3\right)
Multiply both sides of the equation by y+3.
5hy+15h+2x\left(y+3\right)-\left(3+2y\right)=u\left(y+3\right)
Use the distributive property to multiply 5h by y+3.
5hy+15h+2xy+6x-\left(3+2y\right)=u\left(y+3\right)
Use the distributive property to multiply 2x by y+3.
5hy+15h+2xy+6x-3-2y=u\left(y+3\right)
To find the opposite of 3+2y, find the opposite of each term.
5hy+15h+2xy+6x-3-2y=uy+3u
Use the distributive property to multiply u by y+3.
5hy+15h+6x-3-2y=uy+3u-2xy
Subtract 2xy from both sides.
5hy+15h-3-2y=uy+3u-2xy-6x
Subtract 6x from both sides.
5hy+15h-2y=uy+3u-2xy-6x+3
Add 3 to both sides.
5hy+15h=uy+3u-2xy-6x+3+2y
Add 2y to both sides.
\left(5y+15\right)h=uy+3u-2xy-6x+3+2y
Combine all terms containing h.
\left(5y+15\right)h=3+3u+2y+uy-6x-2xy
The equation is in standard form.
\frac{\left(5y+15\right)h}{5y+15}=\frac{3+3u+2y+uy-6x-2xy}{5y+15}
Divide both sides by 5y+15.
h=\frac{3+3u+2y+uy-6x-2xy}{5y+15}
Dividing by 5y+15 undoes the multiplication by 5y+15.
h=\frac{3+3u+2y+uy-6x-2xy}{5\left(y+3\right)}
Divide uy+3u-2xy-6x+3+2y by 5y+15.
5h\left(y+3\right)+2x\left(y+3\right)-\left(3+2y\right)=u\left(y+3\right)
Multiply both sides of the equation by y+3.
5hy+15h+2x\left(y+3\right)-\left(3+2y\right)=u\left(y+3\right)
Use the distributive property to multiply 5h by y+3.
5hy+15h+2xy+6x-\left(3+2y\right)=u\left(y+3\right)
Use the distributive property to multiply 2x by y+3.
5hy+15h+2xy+6x-3-2y=u\left(y+3\right)
To find the opposite of 3+2y, find the opposite of each term.
5hy+15h+2xy+6x-3-2y=uy+3u
Use the distributive property to multiply u by y+3.
uy+3u=5hy+15h+2xy+6x-3-2y
Swap sides so that all variable terms are on the left hand side.
\left(y+3\right)u=5hy+15h+2xy+6x-3-2y
Combine all terms containing u.
\left(y+3\right)u=2xy+6x+5hy-2y+15h-3
The equation is in standard form.
\frac{\left(y+3\right)u}{y+3}=\frac{2xy+6x+5hy-2y+15h-3}{y+3}
Divide both sides by y+3.
u=\frac{2xy+6x+5hy-2y+15h-3}{y+3}
Dividing by y+3 undoes the multiplication by y+3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}