Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\left(5h-4\right)\left(y+3\right)}{2\left(2y+3\right)}\text{, }&y\neq -\frac{3}{2}\text{ and }y\neq -3\\x\in \mathrm{C}\text{, }&y=-\frac{3}{2}\text{ and }h=\frac{4}{5}\end{matrix}\right.
Solve for h
h=-\frac{2\left(2xy+3x-2y-6\right)}{5\left(y+3\right)}
y\neq -3
Solve for x
\left\{\begin{matrix}x=-\frac{\left(5h-4\right)\left(y+3\right)}{2\left(2y+3\right)}\text{, }&y\neq -\frac{3}{2}\text{ and }y\neq -3\\x\in \mathrm{R}\text{, }&y=-\frac{3}{2}\text{ and }h=\frac{4}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
5h\left(y+3\right)+2x\left(3+2y\right)=4\left(y+3\right)
Multiply both sides of the equation by y+3.
5hy+15h+2x\left(3+2y\right)=4\left(y+3\right)
Use the distributive property to multiply 5h by y+3.
5hy+15h+6x+4xy=4\left(y+3\right)
Use the distributive property to multiply 2x by 3+2y.
5hy+15h+6x+4xy=4y+12
Use the distributive property to multiply 4 by y+3.
15h+6x+4xy=4y+12-5hy
Subtract 5hy from both sides.
6x+4xy=4y+12-5hy-15h
Subtract 15h from both sides.
\left(6+4y\right)x=4y+12-5hy-15h
Combine all terms containing x.
\left(4y+6\right)x=12-15h+4y-5hy
The equation is in standard form.
\frac{\left(4y+6\right)x}{4y+6}=\frac{\left(4-5h\right)\left(y+3\right)}{4y+6}
Divide both sides by 4y+6.
x=\frac{\left(4-5h\right)\left(y+3\right)}{4y+6}
Dividing by 4y+6 undoes the multiplication by 4y+6.
x=\frac{\left(4-5h\right)\left(y+3\right)}{2\left(2y+3\right)}
Divide \left(3+y\right)\left(4-5h\right) by 4y+6.
5h\left(y+3\right)+2x\left(3+2y\right)=4\left(y+3\right)
Multiply both sides of the equation by y+3.
5hy+15h+2x\left(3+2y\right)=4\left(y+3\right)
Use the distributive property to multiply 5h by y+3.
5hy+15h+6x+4xy=4\left(y+3\right)
Use the distributive property to multiply 2x by 3+2y.
5hy+15h+6x+4xy=4y+12
Use the distributive property to multiply 4 by y+3.
5hy+15h+4xy=4y+12-6x
Subtract 6x from both sides.
5hy+15h=4y+12-6x-4xy
Subtract 4xy from both sides.
\left(5y+15\right)h=4y+12-6x-4xy
Combine all terms containing h.
\left(5y+15\right)h=12+4y-6x-4xy
The equation is in standard form.
\frac{\left(5y+15\right)h}{5y+15}=\frac{12+4y-6x-4xy}{5y+15}
Divide both sides by 5y+15.
h=\frac{12+4y-6x-4xy}{5y+15}
Dividing by 5y+15 undoes the multiplication by 5y+15.
h=\frac{2\left(6+2y-3x-2xy\right)}{5\left(y+3\right)}
Divide 4y+12-6x-4xy by 5y+15.
5h\left(y+3\right)+2x\left(3+2y\right)=4\left(y+3\right)
Multiply both sides of the equation by y+3.
5hy+15h+2x\left(3+2y\right)=4\left(y+3\right)
Use the distributive property to multiply 5h by y+3.
5hy+15h+6x+4xy=4\left(y+3\right)
Use the distributive property to multiply 2x by 3+2y.
5hy+15h+6x+4xy=4y+12
Use the distributive property to multiply 4 by y+3.
15h+6x+4xy=4y+12-5hy
Subtract 5hy from both sides.
6x+4xy=4y+12-5hy-15h
Subtract 15h from both sides.
\left(6+4y\right)x=4y+12-5hy-15h
Combine all terms containing x.
\left(4y+6\right)x=12-15h+4y-5hy
The equation is in standard form.
\frac{\left(4y+6\right)x}{4y+6}=\frac{\left(4-5h\right)\left(y+3\right)}{4y+6}
Divide both sides by 4y+6.
x=\frac{\left(4-5h\right)\left(y+3\right)}{4y+6}
Dividing by 4y+6 undoes the multiplication by 4y+6.
x=\frac{\left(4-5h\right)\left(y+3\right)}{2\left(2y+3\right)}
Divide \left(3+y\right)\left(4-5h\right) by 4y+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}