Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(5g-49+g^{2})
Calculate 7 to the power of 2 and get 49.
g^{2}+5g-49=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
g=\frac{-5±\sqrt{5^{2}-4\left(-49\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-5±\sqrt{25-4\left(-49\right)}}{2}
Square 5.
g=\frac{-5±\sqrt{25+196}}{2}
Multiply -4 times -49.
g=\frac{-5±\sqrt{221}}{2}
Add 25 to 196.
g=\frac{\sqrt{221}-5}{2}
Now solve the equation g=\frac{-5±\sqrt{221}}{2} when ± is plus. Add -5 to \sqrt{221}.
g=\frac{-\sqrt{221}-5}{2}
Now solve the equation g=\frac{-5±\sqrt{221}}{2} when ± is minus. Subtract \sqrt{221} from -5.
g^{2}+5g-49=\left(g-\frac{\sqrt{221}-5}{2}\right)\left(g-\frac{-\sqrt{221}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{221}}{2} for x_{1} and \frac{-5-\sqrt{221}}{2} for x_{2}.
5g-49+g^{2}
Calculate 7 to the power of 2 and get 49.