Factor
\left(g-\frac{-\sqrt{221}-5}{2}\right)\left(g-\frac{\sqrt{221}-5}{2}\right)
Evaluate
g^{2}+5g-49
Share
Copied to clipboard
factor(5g-49+g^{2})
Calculate 7 to the power of 2 and get 49.
g^{2}+5g-49=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
g=\frac{-5±\sqrt{5^{2}-4\left(-49\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-5±\sqrt{25-4\left(-49\right)}}{2}
Square 5.
g=\frac{-5±\sqrt{25+196}}{2}
Multiply -4 times -49.
g=\frac{-5±\sqrt{221}}{2}
Add 25 to 196.
g=\frac{\sqrt{221}-5}{2}
Now solve the equation g=\frac{-5±\sqrt{221}}{2} when ± is plus. Add -5 to \sqrt{221}.
g=\frac{-\sqrt{221}-5}{2}
Now solve the equation g=\frac{-5±\sqrt{221}}{2} when ± is minus. Subtract \sqrt{221} from -5.
g^{2}+5g-49=\left(g-\frac{\sqrt{221}-5}{2}\right)\left(g-\frac{-\sqrt{221}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{221}}{2} for x_{1} and \frac{-5-\sqrt{221}}{2} for x_{2}.
5g-49+g^{2}
Calculate 7 to the power of 2 and get 49.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}