Solve for c
c=-5fk+\frac{5f}{2}+\frac{3}{2}
k\neq \frac{1}{2}
Solve for f
f=-\frac{3-2c}{5\left(1-2k\right)}
k\neq \frac{1}{2}
Share
Copied to clipboard
5f\left(-2k+1\right)=2c-3
Multiply both sides of the equation by -2k+1.
-10fk+5f=2c-3
Use the distributive property to multiply 5f by -2k+1.
2c-3=-10fk+5f
Swap sides so that all variable terms are on the left hand side.
2c=-10fk+5f+3
Add 3 to both sides.
2c=3+5f-10fk
The equation is in standard form.
\frac{2c}{2}=\frac{3+5f-10fk}{2}
Divide both sides by 2.
c=\frac{3+5f-10fk}{2}
Dividing by 2 undoes the multiplication by 2.
c=-5fk+\frac{5f}{2}+\frac{3}{2}
Divide -10fk+5f+3 by 2.
5f\left(-2k+1\right)=2c-3
Multiply both sides of the equation by -2k+1.
-10fk+5f=2c-3
Use the distributive property to multiply 5f by -2k+1.
\left(-10k+5\right)f=2c-3
Combine all terms containing f.
\left(5-10k\right)f=2c-3
The equation is in standard form.
\frac{\left(5-10k\right)f}{5-10k}=\frac{2c-3}{5-10k}
Divide both sides by 5-10k.
f=\frac{2c-3}{5-10k}
Dividing by 5-10k undoes the multiplication by 5-10k.
f=\frac{2c-3}{5\left(1-2k\right)}
Divide 2c-3 by 5-10k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}