Solve for d
d=\frac{\sqrt{110}}{5}+1\approx 3.097617696
d=-\frac{\sqrt{110}}{5}+1\approx -1.097617696
Share
Copied to clipboard
5d^{2}-10d=17
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5d^{2}-10d-17=17-17
Subtract 17 from both sides of the equation.
5d^{2}-10d-17=0
Subtracting 17 from itself leaves 0.
d=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-17\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -10 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-17\right)}}{2\times 5}
Square -10.
d=\frac{-\left(-10\right)±\sqrt{100-20\left(-17\right)}}{2\times 5}
Multiply -4 times 5.
d=\frac{-\left(-10\right)±\sqrt{100+340}}{2\times 5}
Multiply -20 times -17.
d=\frac{-\left(-10\right)±\sqrt{440}}{2\times 5}
Add 100 to 340.
d=\frac{-\left(-10\right)±2\sqrt{110}}{2\times 5}
Take the square root of 440.
d=\frac{10±2\sqrt{110}}{2\times 5}
The opposite of -10 is 10.
d=\frac{10±2\sqrt{110}}{10}
Multiply 2 times 5.
d=\frac{2\sqrt{110}+10}{10}
Now solve the equation d=\frac{10±2\sqrt{110}}{10} when ± is plus. Add 10 to 2\sqrt{110}.
d=\frac{\sqrt{110}}{5}+1
Divide 10+2\sqrt{110} by 10.
d=\frac{10-2\sqrt{110}}{10}
Now solve the equation d=\frac{10±2\sqrt{110}}{10} when ± is minus. Subtract 2\sqrt{110} from 10.
d=-\frac{\sqrt{110}}{5}+1
Divide 10-2\sqrt{110} by 10.
d=\frac{\sqrt{110}}{5}+1 d=-\frac{\sqrt{110}}{5}+1
The equation is now solved.
5d^{2}-10d=17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5d^{2}-10d}{5}=\frac{17}{5}
Divide both sides by 5.
d^{2}+\left(-\frac{10}{5}\right)d=\frac{17}{5}
Dividing by 5 undoes the multiplication by 5.
d^{2}-2d=\frac{17}{5}
Divide -10 by 5.
d^{2}-2d+1=\frac{17}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}-2d+1=\frac{22}{5}
Add \frac{17}{5} to 1.
\left(d-1\right)^{2}=\frac{22}{5}
Factor d^{2}-2d+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d-1\right)^{2}}=\sqrt{\frac{22}{5}}
Take the square root of both sides of the equation.
d-1=\frac{\sqrt{110}}{5} d-1=-\frac{\sqrt{110}}{5}
Simplify.
d=\frac{\sqrt{110}}{5}+1 d=-\frac{\sqrt{110}}{5}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}