Solve for d
d=\frac{\sqrt{41}-9}{4}\approx -0.649218941
d=\frac{-\sqrt{41}-9}{4}\approx -3.850781059
Share
Copied to clipboard
5d^{2}+9d+5-3d^{2}=0
Subtract 3d^{2} from both sides.
2d^{2}+9d+5=0
Combine 5d^{2} and -3d^{2} to get 2d^{2}.
d=\frac{-9±\sqrt{9^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 9 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-9±\sqrt{81-4\times 2\times 5}}{2\times 2}
Square 9.
d=\frac{-9±\sqrt{81-8\times 5}}{2\times 2}
Multiply -4 times 2.
d=\frac{-9±\sqrt{81-40}}{2\times 2}
Multiply -8 times 5.
d=\frac{-9±\sqrt{41}}{2\times 2}
Add 81 to -40.
d=\frac{-9±\sqrt{41}}{4}
Multiply 2 times 2.
d=\frac{\sqrt{41}-9}{4}
Now solve the equation d=\frac{-9±\sqrt{41}}{4} when ± is plus. Add -9 to \sqrt{41}.
d=\frac{-\sqrt{41}-9}{4}
Now solve the equation d=\frac{-9±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -9.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
The equation is now solved.
5d^{2}+9d+5-3d^{2}=0
Subtract 3d^{2} from both sides.
2d^{2}+9d+5=0
Combine 5d^{2} and -3d^{2} to get 2d^{2}.
2d^{2}+9d=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{2d^{2}+9d}{2}=-\frac{5}{2}
Divide both sides by 2.
d^{2}+\frac{9}{2}d=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
d^{2}+\frac{9}{2}d+\left(\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{9}{2}d+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{9}{2}d+\frac{81}{16}=\frac{41}{16}
Add -\frac{5}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{9}{4}\right)^{2}=\frac{41}{16}
Factor d^{2}+\frac{9}{2}d+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
d+\frac{9}{4}=\frac{\sqrt{41}}{4} d+\frac{9}{4}=-\frac{\sqrt{41}}{4}
Simplify.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Subtract \frac{9}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}