Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

5d^{2}+9d+5-3d^{2}=0
Subtract 3d^{2} from both sides.
2d^{2}+9d+5=0
Combine 5d^{2} and -3d^{2} to get 2d^{2}.
d=\frac{-9±\sqrt{9^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 9 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-9±\sqrt{81-4\times 2\times 5}}{2\times 2}
Square 9.
d=\frac{-9±\sqrt{81-8\times 5}}{2\times 2}
Multiply -4 times 2.
d=\frac{-9±\sqrt{81-40}}{2\times 2}
Multiply -8 times 5.
d=\frac{-9±\sqrt{41}}{2\times 2}
Add 81 to -40.
d=\frac{-9±\sqrt{41}}{4}
Multiply 2 times 2.
d=\frac{\sqrt{41}-9}{4}
Now solve the equation d=\frac{-9±\sqrt{41}}{4} when ± is plus. Add -9 to \sqrt{41}.
d=\frac{-\sqrt{41}-9}{4}
Now solve the equation d=\frac{-9±\sqrt{41}}{4} when ± is minus. Subtract \sqrt{41} from -9.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
The equation is now solved.
5d^{2}+9d+5-3d^{2}=0
Subtract 3d^{2} from both sides.
2d^{2}+9d+5=0
Combine 5d^{2} and -3d^{2} to get 2d^{2}.
2d^{2}+9d=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{2d^{2}+9d}{2}=-\frac{5}{2}
Divide both sides by 2.
d^{2}+\frac{9}{2}d=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
d^{2}+\frac{9}{2}d+\left(\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{9}{4}\right)^{2}
Divide \frac{9}{2}, the coefficient of the x term, by 2 to get \frac{9}{4}. Then add the square of \frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{9}{2}d+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
Square \frac{9}{4} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{9}{2}d+\frac{81}{16}=\frac{41}{16}
Add -\frac{5}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{9}{4}\right)^{2}=\frac{41}{16}
Factor d^{2}+\frac{9}{2}d+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
d+\frac{9}{4}=\frac{\sqrt{41}}{4} d+\frac{9}{4}=-\frac{\sqrt{41}}{4}
Simplify.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Subtract \frac{9}{4} from both sides of the equation.