Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

5b^{2}-191=0
Subtract 65 from -126 to get -191.
5b^{2}=191
Add 191 to both sides. Anything plus zero gives itself.
b^{2}=\frac{191}{5}
Divide both sides by 5.
b=\frac{\sqrt{955}}{5} b=-\frac{\sqrt{955}}{5}
Take the square root of both sides of the equation.
5b^{2}-191=0
Subtract 65 from -126 to get -191.
b=\frac{0±\sqrt{0^{2}-4\times 5\left(-191\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -191 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 5\left(-191\right)}}{2\times 5}
Square 0.
b=\frac{0±\sqrt{-20\left(-191\right)}}{2\times 5}
Multiply -4 times 5.
b=\frac{0±\sqrt{3820}}{2\times 5}
Multiply -20 times -191.
b=\frac{0±2\sqrt{955}}{2\times 5}
Take the square root of 3820.
b=\frac{0±2\sqrt{955}}{10}
Multiply 2 times 5.
b=\frac{\sqrt{955}}{5}
Now solve the equation b=\frac{0±2\sqrt{955}}{10} when ± is plus.
b=-\frac{\sqrt{955}}{5}
Now solve the equation b=\frac{0±2\sqrt{955}}{10} when ± is minus.
b=\frac{\sqrt{955}}{5} b=-\frac{\sqrt{955}}{5}
The equation is now solved.