Solve for a
\left\{\begin{matrix}a=-\frac{81b-k}{5m}\text{, }&m\neq 0\\a\in \mathrm{R}\text{, }&b=\frac{k}{81}\text{ and }m=0\end{matrix}\right.
Solve for b
b=\frac{k-5am}{81}
Share
Copied to clipboard
5am+81b=k
Calculate 9 to the power of 2 and get 81.
5am=k-81b
Subtract 81b from both sides.
5ma=k-81b
The equation is in standard form.
\frac{5ma}{5m}=\frac{k-81b}{5m}
Divide both sides by 5m.
a=\frac{k-81b}{5m}
Dividing by 5m undoes the multiplication by 5m.
5am+81b=k
Calculate 9 to the power of 2 and get 81.
81b=k-5am
Subtract 5am from both sides.
\frac{81b}{81}=\frac{k-5am}{81}
Divide both sides by 81.
b=\frac{k-5am}{81}
Dividing by 81 undoes the multiplication by 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}