Solve for a
a=1
a=-1
Share
Copied to clipboard
5a^{2}\times 2=3+5+2
Multiply a and a to get a^{2}.
10a^{2}=3+5+2
Multiply 5 and 2 to get 10.
10a^{2}=8+2
Add 3 and 5 to get 8.
10a^{2}=10
Add 8 and 2 to get 10.
a^{2}=\frac{10}{10}
Divide both sides by 10.
a^{2}=1
Divide 10 by 10 to get 1.
a=1 a=-1
Take the square root of both sides of the equation.
5a^{2}\times 2=3+5+2
Multiply a and a to get a^{2}.
10a^{2}=3+5+2
Multiply 5 and 2 to get 10.
10a^{2}=8+2
Add 3 and 5 to get 8.
10a^{2}=10
Add 8 and 2 to get 10.
10a^{2}-10=0
Subtract 10 from both sides.
a=\frac{0±\sqrt{0^{2}-4\times 10\left(-10\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 10\left(-10\right)}}{2\times 10}
Square 0.
a=\frac{0±\sqrt{-40\left(-10\right)}}{2\times 10}
Multiply -4 times 10.
a=\frac{0±\sqrt{400}}{2\times 10}
Multiply -40 times -10.
a=\frac{0±20}{2\times 10}
Take the square root of 400.
a=\frac{0±20}{20}
Multiply 2 times 10.
a=1
Now solve the equation a=\frac{0±20}{20} when ± is plus. Divide 20 by 20.
a=-1
Now solve the equation a=\frac{0±20}{20} when ± is minus. Divide -20 by 20.
a=1 a=-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}