Factor
5\left(a+5\right)\left(a+8\right)a^{2}
Evaluate
5\left(a+5\right)\left(a+8\right)a^{2}
Share
Copied to clipboard
5\left(a^{4}+13a^{3}+40a^{2}\right)
Factor out 5.
a^{2}\left(a^{2}+13a+40\right)
Consider a^{4}+13a^{3}+40a^{2}. Factor out a^{2}.
p+q=13 pq=1\times 40=40
Consider a^{2}+13a+40. Factor the expression by grouping. First, the expression needs to be rewritten as a^{2}+pa+qa+40. To find p and q, set up a system to be solved.
1,40 2,20 4,10 5,8
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 40.
1+40=41 2+20=22 4+10=14 5+8=13
Calculate the sum for each pair.
p=5 q=8
The solution is the pair that gives sum 13.
\left(a^{2}+5a\right)+\left(8a+40\right)
Rewrite a^{2}+13a+40 as \left(a^{2}+5a\right)+\left(8a+40\right).
a\left(a+5\right)+8\left(a+5\right)
Factor out a in the first and 8 in the second group.
\left(a+5\right)\left(a+8\right)
Factor out common term a+5 by using distributive property.
5a^{2}\left(a+5\right)\left(a+8\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}