Evaluate
2ba^{2}
Expand
2ba^{2}
Share
Copied to clipboard
5a^{2}b-\frac{12a^{3}b^{2}-a\left(-3a\right)^{2}\left(-3b\right)^{2}}{-23ab}
Calculate -b to the power of 2 and get b^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a\left(-3\right)^{2}a^{2}\left(-3b\right)^{2}}{-23ab}
Expand \left(-3a\right)^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a\times 9a^{2}\left(-3b\right)^{2}}{-23ab}
Calculate -3 to the power of 2 and get 9.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\left(-3b\right)^{2}}{-23ab}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\left(-3\right)^{2}b^{2}}{-23ab}
Expand \left(-3b\right)^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\times 9b^{2}}{-23ab}
Calculate -3 to the power of 2 and get 9.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 81b^{2}}{-23ab}
Multiply 9 and 9 to get 81.
5a^{2}b-\frac{-69a^{3}b^{2}}{-23ab}
Combine 12a^{3}b^{2} and -a^{3}\times 81b^{2} to get -69a^{3}b^{2}.
5a^{2}b-\frac{-3ba^{2}}{-1}
Cancel out 23ab in both numerator and denominator.
5a^{2}b-3ba^{2}
Anything divided by -1 gives its opposite.
2a^{2}b
Combine 5a^{2}b and -3ba^{2} to get 2a^{2}b.
5a^{2}b-\frac{12a^{3}b^{2}-a\left(-3a\right)^{2}\left(-3b\right)^{2}}{-23ab}
Calculate -b to the power of 2 and get b^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a\left(-3\right)^{2}a^{2}\left(-3b\right)^{2}}{-23ab}
Expand \left(-3a\right)^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a\times 9a^{2}\left(-3b\right)^{2}}{-23ab}
Calculate -3 to the power of 2 and get 9.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\left(-3b\right)^{2}}{-23ab}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\left(-3\right)^{2}b^{2}}{-23ab}
Expand \left(-3b\right)^{2}.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 9\times 9b^{2}}{-23ab}
Calculate -3 to the power of 2 and get 9.
5a^{2}b-\frac{12a^{3}b^{2}-a^{3}\times 81b^{2}}{-23ab}
Multiply 9 and 9 to get 81.
5a^{2}b-\frac{-69a^{3}b^{2}}{-23ab}
Combine 12a^{3}b^{2} and -a^{3}\times 81b^{2} to get -69a^{3}b^{2}.
5a^{2}b-\frac{-3ba^{2}}{-1}
Cancel out 23ab in both numerator and denominator.
5a^{2}b-3ba^{2}
Anything divided by -1 gives its opposite.
2a^{2}b
Combine 5a^{2}b and -3ba^{2} to get 2a^{2}b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}