Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}-a+1-3a=5
Subtract 3a from both sides.
5a^{2}-4a+1=5
Combine -a and -3a to get -4a.
5a^{2}-4a+1-5=0
Subtract 5 from both sides.
5a^{2}-4a-4=0
Subtract 5 from 1 to get -4.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\left(-4\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -4 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 5\left(-4\right)}}{2\times 5}
Square -4.
a=\frac{-\left(-4\right)±\sqrt{16-20\left(-4\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-4\right)±\sqrt{16+80}}{2\times 5}
Multiply -20 times -4.
a=\frac{-\left(-4\right)±\sqrt{96}}{2\times 5}
Add 16 to 80.
a=\frac{-\left(-4\right)±4\sqrt{6}}{2\times 5}
Take the square root of 96.
a=\frac{4±4\sqrt{6}}{2\times 5}
The opposite of -4 is 4.
a=\frac{4±4\sqrt{6}}{10}
Multiply 2 times 5.
a=\frac{4\sqrt{6}+4}{10}
Now solve the equation a=\frac{4±4\sqrt{6}}{10} when ± is plus. Add 4 to 4\sqrt{6}.
a=\frac{2\sqrt{6}+2}{5}
Divide 4+4\sqrt{6} by 10.
a=\frac{4-4\sqrt{6}}{10}
Now solve the equation a=\frac{4±4\sqrt{6}}{10} when ± is minus. Subtract 4\sqrt{6} from 4.
a=\frac{2-2\sqrt{6}}{5}
Divide 4-4\sqrt{6} by 10.
a=\frac{2\sqrt{6}+2}{5} a=\frac{2-2\sqrt{6}}{5}
The equation is now solved.
5a^{2}-a+1-3a=5
Subtract 3a from both sides.
5a^{2}-4a+1=5
Combine -a and -3a to get -4a.
5a^{2}-4a=5-1
Subtract 1 from both sides.
5a^{2}-4a=4
Subtract 1 from 5 to get 4.
\frac{5a^{2}-4a}{5}=\frac{4}{5}
Divide both sides by 5.
a^{2}-\frac{4}{5}a=\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}-\frac{4}{5}a+\left(-\frac{2}{5}\right)^{2}=\frac{4}{5}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{4}{5}a+\frac{4}{25}=\frac{4}{5}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{4}{5}a+\frac{4}{25}=\frac{24}{25}
Add \frac{4}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{2}{5}\right)^{2}=\frac{24}{25}
Factor a^{2}-\frac{4}{5}a+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{2}{5}\right)^{2}}=\sqrt{\frac{24}{25}}
Take the square root of both sides of the equation.
a-\frac{2}{5}=\frac{2\sqrt{6}}{5} a-\frac{2}{5}=-\frac{2\sqrt{6}}{5}
Simplify.
a=\frac{2\sqrt{6}+2}{5} a=\frac{2-2\sqrt{6}}{5}
Add \frac{2}{5} to both sides of the equation.