Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}=4+7
Add 7 to both sides.
5a^{2}=11
Add 4 and 7 to get 11.
a^{2}=\frac{11}{5}
Divide both sides by 5.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
Take the square root of both sides of the equation.
5a^{2}-7-4=0
Subtract 4 from both sides.
5a^{2}-11=0
Subtract 4 from -7 to get -11.
a=\frac{0±\sqrt{0^{2}-4\times 5\left(-11\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 5\left(-11\right)}}{2\times 5}
Square 0.
a=\frac{0±\sqrt{-20\left(-11\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{0±\sqrt{220}}{2\times 5}
Multiply -20 times -11.
a=\frac{0±2\sqrt{55}}{2\times 5}
Take the square root of 220.
a=\frac{0±2\sqrt{55}}{10}
Multiply 2 times 5.
a=\frac{\sqrt{55}}{5}
Now solve the equation a=\frac{0±2\sqrt{55}}{10} when ± is plus.
a=-\frac{\sqrt{55}}{5}
Now solve the equation a=\frac{0±2\sqrt{55}}{10} when ± is minus.
a=\frac{\sqrt{55}}{5} a=-\frac{\sqrt{55}}{5}
The equation is now solved.