Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}-5a-2=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 5\left(-2\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 5 for a, -5 for b, and -2 for c in the quadratic formula.
a=\frac{5±\sqrt{65}}{10}
Do the calculations.
a=\frac{\sqrt{65}}{10}+\frac{1}{2} a=-\frac{\sqrt{65}}{10}+\frac{1}{2}
Solve the equation a=\frac{5±\sqrt{65}}{10} when ± is plus and when ± is minus.
5\left(a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\right)\left(a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\right)\geq 0
Rewrite the inequality by using the obtained solutions.
a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\leq 0 a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\leq 0
For the product to be ≥0, a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) and a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right) have to be both ≤0 or both ≥0. Consider the case when a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) and a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right) are both ≤0.
a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}
The solution satisfying both inequalities is a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}.
a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\geq 0 a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right)\geq 0
Consider the case when a-\left(\frac{\sqrt{65}}{10}+\frac{1}{2}\right) and a-\left(-\frac{\sqrt{65}}{10}+\frac{1}{2}\right) are both ≥0.
a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}
The solution satisfying both inequalities is a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}.
a\leq -\frac{\sqrt{65}}{10}+\frac{1}{2}\text{; }a\geq \frac{\sqrt{65}}{10}+\frac{1}{2}
The final solution is the union of the obtained solutions.