Factor
\left(5a-14\right)\left(a+2\right)
Evaluate
\left(5a-14\right)\left(a+2\right)
Share
Copied to clipboard
p+q=-4 pq=5\left(-28\right)=-140
Factor the expression by grouping. First, the expression needs to be rewritten as 5a^{2}+pa+qa-28. To find p and q, set up a system to be solved.
1,-140 2,-70 4,-35 5,-28 7,-20 10,-14
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -140.
1-140=-139 2-70=-68 4-35=-31 5-28=-23 7-20=-13 10-14=-4
Calculate the sum for each pair.
p=-14 q=10
The solution is the pair that gives sum -4.
\left(5a^{2}-14a\right)+\left(10a-28\right)
Rewrite 5a^{2}-4a-28 as \left(5a^{2}-14a\right)+\left(10a-28\right).
a\left(5a-14\right)+2\left(5a-14\right)
Factor out a in the first and 2 in the second group.
\left(5a-14\right)\left(a+2\right)
Factor out common term 5a-14 by using distributive property.
5a^{2}-4a-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\left(-28\right)}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 5\left(-28\right)}}{2\times 5}
Square -4.
a=\frac{-\left(-4\right)±\sqrt{16-20\left(-28\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-4\right)±\sqrt{16+560}}{2\times 5}
Multiply -20 times -28.
a=\frac{-\left(-4\right)±\sqrt{576}}{2\times 5}
Add 16 to 560.
a=\frac{-\left(-4\right)±24}{2\times 5}
Take the square root of 576.
a=\frac{4±24}{2\times 5}
The opposite of -4 is 4.
a=\frac{4±24}{10}
Multiply 2 times 5.
a=\frac{28}{10}
Now solve the equation a=\frac{4±24}{10} when ± is plus. Add 4 to 24.
a=\frac{14}{5}
Reduce the fraction \frac{28}{10} to lowest terms by extracting and canceling out 2.
a=-\frac{20}{10}
Now solve the equation a=\frac{4±24}{10} when ± is minus. Subtract 24 from 4.
a=-2
Divide -20 by 10.
5a^{2}-4a-28=5\left(a-\frac{14}{5}\right)\left(a-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{14}{5} for x_{1} and -2 for x_{2}.
5a^{2}-4a-28=5\left(a-\frac{14}{5}\right)\left(a+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
5a^{2}-4a-28=5\times \frac{5a-14}{5}\left(a+2\right)
Subtract \frac{14}{5} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
5a^{2}-4a-28=\left(5a-14\right)\left(a+2\right)
Cancel out 5, the greatest common factor in 5 and 5.
x ^ 2 -\frac{4}{5}x -\frac{28}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5
r + s = \frac{4}{5} rs = -\frac{28}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{2}{5} - u s = \frac{2}{5} + u
Two numbers r and s sum up to \frac{4}{5} exactly when the average of the two numbers is \frac{1}{2}*\frac{4}{5} = \frac{2}{5}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{2}{5} - u) (\frac{2}{5} + u) = -\frac{28}{5}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{28}{5}
\frac{4}{25} - u^2 = -\frac{28}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{28}{5}-\frac{4}{25} = -\frac{144}{25}
Simplify the expression by subtracting \frac{4}{25} on both sides
u^2 = \frac{144}{25} u = \pm\sqrt{\frac{144}{25}} = \pm \frac{12}{5}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{2}{5} - \frac{12}{5} = -2 s = \frac{2}{5} + \frac{12}{5} = 2.800
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}