Solve for a
a=-\frac{4}{5}=-0.8
a=5
Share
Copied to clipboard
5a^{2}-21a-20=0
Subtract 20 from both sides.
a+b=-21 ab=5\left(-20\right)=-100
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 5a^{2}+aa+ba-20. To find a and b, set up a system to be solved.
1,-100 2,-50 4,-25 5,-20 10,-10
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -100.
1-100=-99 2-50=-48 4-25=-21 5-20=-15 10-10=0
Calculate the sum for each pair.
a=-25 b=4
The solution is the pair that gives sum -21.
\left(5a^{2}-25a\right)+\left(4a-20\right)
Rewrite 5a^{2}-21a-20 as \left(5a^{2}-25a\right)+\left(4a-20\right).
5a\left(a-5\right)+4\left(a-5\right)
Factor out 5a in the first and 4 in the second group.
\left(a-5\right)\left(5a+4\right)
Factor out common term a-5 by using distributive property.
a=5 a=-\frac{4}{5}
To find equation solutions, solve a-5=0 and 5a+4=0.
5a^{2}-21a=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5a^{2}-21a-20=20-20
Subtract 20 from both sides of the equation.
5a^{2}-21a-20=0
Subtracting 20 from itself leaves 0.
a=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 5\left(-20\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -21 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-21\right)±\sqrt{441-4\times 5\left(-20\right)}}{2\times 5}
Square -21.
a=\frac{-\left(-21\right)±\sqrt{441-20\left(-20\right)}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-21\right)±\sqrt{441+400}}{2\times 5}
Multiply -20 times -20.
a=\frac{-\left(-21\right)±\sqrt{841}}{2\times 5}
Add 441 to 400.
a=\frac{-\left(-21\right)±29}{2\times 5}
Take the square root of 841.
a=\frac{21±29}{2\times 5}
The opposite of -21 is 21.
a=\frac{21±29}{10}
Multiply 2 times 5.
a=\frac{50}{10}
Now solve the equation a=\frac{21±29}{10} when ± is plus. Add 21 to 29.
a=5
Divide 50 by 10.
a=-\frac{8}{10}
Now solve the equation a=\frac{21±29}{10} when ± is minus. Subtract 29 from 21.
a=-\frac{4}{5}
Reduce the fraction \frac{-8}{10} to lowest terms by extracting and canceling out 2.
a=5 a=-\frac{4}{5}
The equation is now solved.
5a^{2}-21a=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5a^{2}-21a}{5}=\frac{20}{5}
Divide both sides by 5.
a^{2}-\frac{21}{5}a=\frac{20}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}-\frac{21}{5}a=4
Divide 20 by 5.
a^{2}-\frac{21}{5}a+\left(-\frac{21}{10}\right)^{2}=4+\left(-\frac{21}{10}\right)^{2}
Divide -\frac{21}{5}, the coefficient of the x term, by 2 to get -\frac{21}{10}. Then add the square of -\frac{21}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{21}{5}a+\frac{441}{100}=4+\frac{441}{100}
Square -\frac{21}{10} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{21}{5}a+\frac{441}{100}=\frac{841}{100}
Add 4 to \frac{441}{100}.
\left(a-\frac{21}{10}\right)^{2}=\frac{841}{100}
Factor a^{2}-\frac{21}{5}a+\frac{441}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{21}{10}\right)^{2}}=\sqrt{\frac{841}{100}}
Take the square root of both sides of the equation.
a-\frac{21}{10}=\frac{29}{10} a-\frac{21}{10}=-\frac{29}{10}
Simplify.
a=5 a=-\frac{4}{5}
Add \frac{21}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}