Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

5a^{2}-10a=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
5a^{2}-10a-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
5a^{2}-10a-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
5a^{2}-10a+3=0
Subtract -3 from 0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -10 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 5\times 3}}{2\times 5}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-20\times 3}}{2\times 5}
Multiply -4 times 5.
a=\frac{-\left(-10\right)±\sqrt{100-60}}{2\times 5}
Multiply -20 times 3.
a=\frac{-\left(-10\right)±\sqrt{40}}{2\times 5}
Add 100 to -60.
a=\frac{-\left(-10\right)±2\sqrt{10}}{2\times 5}
Take the square root of 40.
a=\frac{10±2\sqrt{10}}{2\times 5}
The opposite of -10 is 10.
a=\frac{10±2\sqrt{10}}{10}
Multiply 2 times 5.
a=\frac{2\sqrt{10}+10}{10}
Now solve the equation a=\frac{10±2\sqrt{10}}{10} when ± is plus. Add 10 to 2\sqrt{10}.
a=\frac{\sqrt{10}}{5}+1
Divide 10+2\sqrt{10} by 10.
a=\frac{10-2\sqrt{10}}{10}
Now solve the equation a=\frac{10±2\sqrt{10}}{10} when ± is minus. Subtract 2\sqrt{10} from 10.
a=-\frac{\sqrt{10}}{5}+1
Divide 10-2\sqrt{10} by 10.
a=\frac{\sqrt{10}}{5}+1 a=-\frac{\sqrt{10}}{5}+1
The equation is now solved.
5a^{2}-10a=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5a^{2}-10a}{5}=-\frac{3}{5}
Divide both sides by 5.
a^{2}+\left(-\frac{10}{5}\right)a=-\frac{3}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}-2a=-\frac{3}{5}
Divide -10 by 5.
a^{2}-2a+1=-\frac{3}{5}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-2a+1=\frac{2}{5}
Add -\frac{3}{5} to 1.
\left(a-1\right)^{2}=\frac{2}{5}
Factor a^{2}-2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{\frac{2}{5}}
Take the square root of both sides of the equation.
a-1=\frac{\sqrt{10}}{5} a-1=-\frac{\sqrt{10}}{5}
Simplify.
a=\frac{\sqrt{10}}{5}+1 a=-\frac{\sqrt{10}}{5}+1
Add 1 to both sides of the equation.