Solve for a
a=1
a=0
Share
Copied to clipboard
5a^{2}+a=a\times 6a
Combine 5a and a to get 6a.
5a^{2}+a=a^{2}\times 6
Multiply a and a to get a^{2}.
5a^{2}+a-a^{2}\times 6=0
Subtract a^{2}\times 6 from both sides.
-a^{2}+a=0
Combine 5a^{2} and -a^{2}\times 6 to get -a^{2}.
a\left(-a+1\right)=0
Factor out a.
a=0 a=1
To find equation solutions, solve a=0 and -a+1=0.
5a^{2}+a=a\times 6a
Combine 5a and a to get 6a.
5a^{2}+a=a^{2}\times 6
Multiply a and a to get a^{2}.
5a^{2}+a-a^{2}\times 6=0
Subtract a^{2}\times 6 from both sides.
-a^{2}+a=0
Combine 5a^{2} and -a^{2}\times 6 to get -a^{2}.
a=\frac{-1±\sqrt{1^{2}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-1±1}{2\left(-1\right)}
Take the square root of 1^{2}.
a=\frac{-1±1}{-2}
Multiply 2 times -1.
a=\frac{0}{-2}
Now solve the equation a=\frac{-1±1}{-2} when ± is plus. Add -1 to 1.
a=0
Divide 0 by -2.
a=-\frac{2}{-2}
Now solve the equation a=\frac{-1±1}{-2} when ± is minus. Subtract 1 from -1.
a=1
Divide -2 by -2.
a=0 a=1
The equation is now solved.
5a^{2}+a=a\times 6a
Combine 5a and a to get 6a.
5a^{2}+a=a^{2}\times 6
Multiply a and a to get a^{2}.
5a^{2}+a-a^{2}\times 6=0
Subtract a^{2}\times 6 from both sides.
-a^{2}+a=0
Combine 5a^{2} and -a^{2}\times 6 to get -a^{2}.
\frac{-a^{2}+a}{-1}=\frac{0}{-1}
Divide both sides by -1.
a^{2}+\frac{1}{-1}a=\frac{0}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}-a=\frac{0}{-1}
Divide 1 by -1.
a^{2}-a=0
Divide 0 by -1.
a^{2}-a+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-a+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}-a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a-\frac{1}{2}=\frac{1}{2} a-\frac{1}{2}=-\frac{1}{2}
Simplify.
a=1 a=0
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}