Solve for a
a=\frac{3}{b+5}
b\neq -5
Solve for b
b=-5+\frac{3}{a}
a\neq 0
Share
Copied to clipboard
5a+ab=3
Add ab to both sides.
\left(5+b\right)a=3
Combine all terms containing a.
\left(b+5\right)a=3
The equation is in standard form.
\frac{\left(b+5\right)a}{b+5}=\frac{3}{b+5}
Divide both sides by b+5.
a=\frac{3}{b+5}
Dividing by b+5 undoes the multiplication by b+5.
3-ab=5a
Swap sides so that all variable terms are on the left hand side.
-ab=5a-3
Subtract 3 from both sides.
\left(-a\right)b=5a-3
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=\frac{5a-3}{-a}
Divide both sides by -a.
b=\frac{5a-3}{-a}
Dividing by -a undoes the multiplication by -a.
b=-5+\frac{3}{a}
Divide 5a-3 by -a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}