Evaluate
-a-347762
Differentiate w.r.t. a
-1
Share
Copied to clipboard
5a+190-14\times 18-6a-76\times 61\times 75
Add 90 and 100 to get 190.
5a+190-252-6a-76\times 61\times 75
Multiply 14 and 18 to get 252.
5a-62-6a-76\times 61\times 75
Subtract 252 from 190 to get -62.
-a-62-76\times 61\times 75
Combine 5a and -6a to get -a.
-a-62-4636\times 75
Multiply 76 and 61 to get 4636.
-a-62-347700
Multiply 4636 and 75 to get 347700.
-a-347762
Subtract 347700 from -62 to get -347762.
\frac{\mathrm{d}}{\mathrm{d}a}(5a+190-14\times 18-6a-76\times 61\times 75)
Add 90 and 100 to get 190.
\frac{\mathrm{d}}{\mathrm{d}a}(5a+190-252-6a-76\times 61\times 75)
Multiply 14 and 18 to get 252.
\frac{\mathrm{d}}{\mathrm{d}a}(5a-62-6a-76\times 61\times 75)
Subtract 252 from 190 to get -62.
\frac{\mathrm{d}}{\mathrm{d}a}(-a-62-76\times 61\times 75)
Combine 5a and -6a to get -a.
\frac{\mathrm{d}}{\mathrm{d}a}(-a-62-4636\times 75)
Multiply 76 and 61 to get 4636.
\frac{\mathrm{d}}{\mathrm{d}a}(-a-62-347700)
Multiply 4636 and 75 to get 347700.
\frac{\mathrm{d}}{\mathrm{d}a}(-a-347762)
Subtract 347700 from -62 to get -347762.
-a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-a^{0}
Subtract 1 from 1.
-1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}