Solve for X
X=\frac{\sqrt{10}}{5}-1\approx -0.367544468
X=-\frac{\sqrt{10}}{5}-1\approx -1.632455532
Share
Copied to clipboard
5X^{2}+10X+6=3
Use the distributive property to multiply 5X by X+2.
5X^{2}+10X+6-3=0
Subtract 3 from both sides.
5X^{2}+10X+3=0
Subtract 3 from 6 to get 3.
X=\frac{-10±\sqrt{10^{2}-4\times 5\times 3}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 10 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
X=\frac{-10±\sqrt{100-4\times 5\times 3}}{2\times 5}
Square 10.
X=\frac{-10±\sqrt{100-20\times 3}}{2\times 5}
Multiply -4 times 5.
X=\frac{-10±\sqrt{100-60}}{2\times 5}
Multiply -20 times 3.
X=\frac{-10±\sqrt{40}}{2\times 5}
Add 100 to -60.
X=\frac{-10±2\sqrt{10}}{2\times 5}
Take the square root of 40.
X=\frac{-10±2\sqrt{10}}{10}
Multiply 2 times 5.
X=\frac{2\sqrt{10}-10}{10}
Now solve the equation X=\frac{-10±2\sqrt{10}}{10} when ± is plus. Add -10 to 2\sqrt{10}.
X=\frac{\sqrt{10}}{5}-1
Divide -10+2\sqrt{10} by 10.
X=\frac{-2\sqrt{10}-10}{10}
Now solve the equation X=\frac{-10±2\sqrt{10}}{10} when ± is minus. Subtract 2\sqrt{10} from -10.
X=-\frac{\sqrt{10}}{5}-1
Divide -10-2\sqrt{10} by 10.
X=\frac{\sqrt{10}}{5}-1 X=-\frac{\sqrt{10}}{5}-1
The equation is now solved.
5X^{2}+10X+6=3
Use the distributive property to multiply 5X by X+2.
5X^{2}+10X=3-6
Subtract 6 from both sides.
5X^{2}+10X=-3
Subtract 6 from 3 to get -3.
\frac{5X^{2}+10X}{5}=-\frac{3}{5}
Divide both sides by 5.
X^{2}+\frac{10}{5}X=-\frac{3}{5}
Dividing by 5 undoes the multiplication by 5.
X^{2}+2X=-\frac{3}{5}
Divide 10 by 5.
X^{2}+2X+1^{2}=-\frac{3}{5}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
X^{2}+2X+1=-\frac{3}{5}+1
Square 1.
X^{2}+2X+1=\frac{2}{5}
Add -\frac{3}{5} to 1.
\left(X+1\right)^{2}=\frac{2}{5}
Factor X^{2}+2X+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(X+1\right)^{2}}=\sqrt{\frac{2}{5}}
Take the square root of both sides of the equation.
X+1=\frac{\sqrt{10}}{5} X+1=-\frac{\sqrt{10}}{5}
Simplify.
X=\frac{\sqrt{10}}{5}-1 X=-\frac{\sqrt{10}}{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}