Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-s^{2}+6s+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
s=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
s=\frac{-6±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square 6.
s=\frac{-6±\sqrt{36+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
s=\frac{-6±\sqrt{36+20}}{2\left(-1\right)}
Multiply 4 times 5.
s=\frac{-6±\sqrt{56}}{2\left(-1\right)}
Add 36 to 20.
s=\frac{-6±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
s=\frac{-6±2\sqrt{14}}{-2}
Multiply 2 times -1.
s=\frac{2\sqrt{14}-6}{-2}
Now solve the equation s=\frac{-6±2\sqrt{14}}{-2} when ± is plus. Add -6 to 2\sqrt{14}.
s=3-\sqrt{14}
Divide -6+2\sqrt{14} by -2.
s=\frac{-2\sqrt{14}-6}{-2}
Now solve the equation s=\frac{-6±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from -6.
s=\sqrt{14}+3
Divide -6-2\sqrt{14} by -2.
-s^{2}+6s+5=-\left(s-\left(3-\sqrt{14}\right)\right)\left(s-\left(\sqrt{14}+3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3-\sqrt{14} for x_{1} and 3+\sqrt{14} for x_{2}.