Solve for n
n=10.2
Share
Copied to clipboard
5-n-\frac{20}{25}=-\frac{15}{2.5}
Expand \frac{2}{2.5} by multiplying both numerator and the denominator by 10.
5-n-\frac{4}{5}=-\frac{15}{2.5}
Reduce the fraction \frac{20}{25} to lowest terms by extracting and canceling out 5.
\frac{25}{5}-n-\frac{4}{5}=-\frac{15}{2.5}
Convert 5 to fraction \frac{25}{5}.
\frac{25-4}{5}-n=-\frac{15}{2.5}
Since \frac{25}{5} and \frac{4}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{21}{5}-n=-\frac{15}{2.5}
Subtract 4 from 25 to get 21.
\frac{21}{5}-n=-\frac{150}{25}
Expand \frac{15}{2.5} by multiplying both numerator and the denominator by 10.
\frac{21}{5}-n=-6
Divide 150 by 25 to get 6.
-n=-6-\frac{21}{5}
Subtract \frac{21}{5} from both sides.
-n=-\frac{30}{5}-\frac{21}{5}
Convert -6 to fraction -\frac{30}{5}.
-n=\frac{-30-21}{5}
Since -\frac{30}{5} and \frac{21}{5} have the same denominator, subtract them by subtracting their numerators.
-n=-\frac{51}{5}
Subtract 21 from -30 to get -51.
n=\frac{51}{5}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}