Solve for a
a=\frac{5}{460b+1}
b\neq -\frac{1}{460}
Solve for b
b=-\frac{1}{460}+\frac{1}{92a}
a\neq 0
Share
Copied to clipboard
5-a=b\times 92\times 5a
Multiply 2 and 46 to get 92.
5-a=b\times 460a
Multiply 92 and 5 to get 460.
5-a-b\times 460a=0
Subtract b\times 460a from both sides.
5-a-460ba=0
Multiply -1 and 460 to get -460.
-a-460ba=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(-1-460b\right)a=-5
Combine all terms containing a.
\left(-460b-1\right)a=-5
The equation is in standard form.
\frac{\left(-460b-1\right)a}{-460b-1}=-\frac{5}{-460b-1}
Divide both sides by -1-460b.
a=-\frac{5}{-460b-1}
Dividing by -1-460b undoes the multiplication by -1-460b.
a=\frac{5}{460b+1}
Divide -5 by -1-460b.
5-a=b\times 92\times 5a
Multiply 2 and 46 to get 92.
5-a=b\times 460a
Multiply 92 and 5 to get 460.
b\times 460a=5-a
Swap sides so that all variable terms are on the left hand side.
460ab=5-a
The equation is in standard form.
\frac{460ab}{460a}=\frac{5-a}{460a}
Divide both sides by 460a.
b=\frac{5-a}{460a}
Dividing by 460a undoes the multiplication by 460a.
b=-\frac{1}{460}+\frac{1}{92a}
Divide 5-a by 460a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}