Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}-6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Add 36 to 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{14}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is plus. Add 6 to 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Divide 6+2\sqrt{14} by -2.
x=\frac{6-2\sqrt{14}}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from 6.
x=\sqrt{14}-3
Divide 6-2\sqrt{14} by -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
The equation is now solved.
-x^{2}-6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Subtract 5 from both sides of the equation.
-x^{2}-6x=-5
Subtracting 5 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{5}{-1}
Divide -6 by -1.
x^{2}+6x=5
Divide -5 by -1.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.
-x^{2}-6x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -6 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
Add 36 to 20.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
Take the square root of 56.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{14}+6}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is plus. Add 6 to 2\sqrt{14}.
x=-\left(\sqrt{14}+3\right)
Divide 6+2\sqrt{14} by -2.
x=\frac{6-2\sqrt{14}}{-2}
Now solve the equation x=\frac{6±2\sqrt{14}}{-2} when ± is minus. Subtract 2\sqrt{14} from 6.
x=\sqrt{14}-3
Divide 6-2\sqrt{14} by -2.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
The equation is now solved.
-x^{2}-6x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Subtract 5 from both sides of the equation.
-x^{2}-6x=-5
Subtracting 5 from itself leaves 0.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+6x=-\frac{5}{-1}
Divide -6 by -1.
x^{2}+6x=5
Divide -5 by -1.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.