Evaluate
25-45i
Real Part
25
Share
Copied to clipboard
5-5\left(-4-3i\left(-3\right)\right)
Subtract 1 from -2 to get -3.
5-5\left(-4-\left(-9i\right)\right)
Multiply 3i and -3 to get -9i.
5-5\left(-4+9i\right)
The opposite of -9i is 9i.
5-\left(5\left(-4\right)+5\times \left(9i\right)\right)
Multiply 5 times -4+9i.
5-\left(-20+45i\right)
Do the multiplications in 5\left(-4\right)+5\times \left(9i\right).
5-\left(-20\right)+45i
Subtract -20+45i from 5 by subtracting corresponding real and imaginary parts.
25-45i
Subtract -20 from 5.
Re(5-5\left(-4-3i\left(-3\right)\right))
Subtract 1 from -2 to get -3.
Re(5-5\left(-4-\left(-9i\right)\right))
Multiply 3i and -3 to get -9i.
Re(5-5\left(-4+9i\right))
The opposite of -9i is 9i.
Re(5-\left(5\left(-4\right)+5\times \left(9i\right)\right))
Multiply 5 times -4+9i.
Re(5-\left(-20+45i\right))
Do the multiplications in 5\left(-4\right)+5\times \left(9i\right).
Re(5-\left(-20\right)+45i)
Subtract -20+45i from 5 by subtracting corresponding real and imaginary parts.
Re(25-45i)
Subtract -20 from 5.
25
The real part of 25-45i is 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}