Solve for x
x=\frac{5-\sqrt{2}-\sqrt{3}}{4}\approx 0.463433908
Graph
Share
Copied to clipboard
-4x-\sqrt{2}-\sqrt{3}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-4x-\sqrt{3}=-5+\sqrt{2}
Add \sqrt{2} to both sides.
-4x=-5+\sqrt{2}+\sqrt{3}
Add \sqrt{3} to both sides.
-4x=\sqrt{2}+\sqrt{3}-5
The equation is in standard form.
\frac{-4x}{-4}=\frac{\sqrt{2}+\sqrt{3}-5}{-4}
Divide both sides by -4.
x=\frac{\sqrt{2}+\sqrt{3}-5}{-4}
Dividing by -4 undoes the multiplication by -4.
x=\frac{5-\sqrt{2}-\sqrt{3}}{4}
Divide -5+\sqrt{2}+\sqrt{3} by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}