Solve for t
t=-\frac{2}{3}+\frac{5}{3x}
x\neq 0
Solve for x
x=\frac{5}{3t+2}
t\neq -\frac{2}{3}
Graph
Share
Copied to clipboard
-3tx=2x-5
Subtract 5 from both sides.
\left(-3x\right)t=2x-5
The equation is in standard form.
\frac{\left(-3x\right)t}{-3x}=\frac{2x-5}{-3x}
Divide both sides by -3x.
t=\frac{2x-5}{-3x}
Dividing by -3x undoes the multiplication by -3x.
t=-\frac{2}{3}+\frac{5}{3x}
Divide 2x-5 by -3x.
5-3tx-2x=0
Subtract 2x from both sides.
-3tx-2x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(-3t-2\right)x=-5
Combine all terms containing x.
\frac{\left(-3t-2\right)x}{-3t-2}=-\frac{5}{-3t-2}
Divide both sides by -3t-2.
x=-\frac{5}{-3t-2}
Dividing by -3t-2 undoes the multiplication by -3t-2.
x=\frac{5}{3t+2}
Divide -5 by -3t-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}