Solve for n
n\geq -\frac{1}{3}
Share
Copied to clipboard
5-\left(-21n\right)\geq n\times 3\times 2
Multiply 3 and -7 to get -21.
5+21n\geq n\times 3\times 2
The opposite of -21n is 21n.
5+21n\geq n\times 6
Multiply 3 and 2 to get 6.
5+21n-n\times 6\geq 0
Subtract n\times 6 from both sides.
5+15n\geq 0
Combine 21n and -n\times 6 to get 15n.
15n\geq -5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
n\geq \frac{-5}{15}
Divide both sides by 15. Since 15 is positive, the inequality direction remains the same.
n\geq -\frac{1}{3}
Reduce the fraction \frac{-5}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}