Solve for t
t>3
Share
Copied to clipboard
5-0.3t<2.1+0.5t+0.5
Use the distributive property to multiply 0.5 by t+1.
5-0.3t<2.6+0.5t
Add 2.1 and 0.5 to get 2.6.
5-0.3t-0.5t<2.6
Subtract 0.5t from both sides.
5-0.8t<2.6
Combine -0.3t and -0.5t to get -0.8t.
-0.8t<2.6-5
Subtract 5 from both sides.
-0.8t<-2.4
Subtract 5 from 2.6 to get -2.4.
t>\frac{-2.4}{-0.8}
Divide both sides by -0.8. Since -0.8 is negative, the inequality direction is changed.
t>\frac{-24}{-8}
Expand \frac{-2.4}{-0.8} by multiplying both numerator and the denominator by 10.
t>3
Divide -24 by -8 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}