Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{18}{6}+\frac{7}{6}-\left(\frac{4}{5}-1\right)|-\frac{1}{6}\right)-\frac{2}{3}
Convert -3 to fraction -\frac{18}{6}.
5-\left(-\frac{1}{5}+\frac{5}{4}|\frac{-18+7}{6}-\left(\frac{4}{5}-1\right)|-\frac{1}{6}\right)-\frac{2}{3}
Since -\frac{18}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{11}{6}-\left(\frac{4}{5}-1\right)|-\frac{1}{6}\right)-\frac{2}{3}
Add -18 and 7 to get -11.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{11}{6}-\left(\frac{4}{5}-\frac{5}{5}\right)|-\frac{1}{6}\right)-\frac{2}{3}
Convert 1 to fraction \frac{5}{5}.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{11}{6}-\frac{4-5}{5}|-\frac{1}{6}\right)-\frac{2}{3}
Since \frac{4}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{11}{6}-\left(-\frac{1}{5}\right)|-\frac{1}{6}\right)-\frac{2}{3}
Subtract 5 from 4 to get -1.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{11}{6}+\frac{1}{5}|-\frac{1}{6}\right)-\frac{2}{3}
The opposite of -\frac{1}{5} is \frac{1}{5}.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{55}{30}+\frac{6}{30}|-\frac{1}{6}\right)-\frac{2}{3}
Least common multiple of 6 and 5 is 30. Convert -\frac{11}{6} and \frac{1}{5} to fractions with denominator 30.
5-\left(-\frac{1}{5}+\frac{5}{4}|\frac{-55+6}{30}|-\frac{1}{6}\right)-\frac{2}{3}
Since -\frac{55}{30} and \frac{6}{30} have the same denominator, add them by adding their numerators.
5-\left(-\frac{1}{5}+\frac{5}{4}|-\frac{49}{30}|-\frac{1}{6}\right)-\frac{2}{3}
Add -55 and 6 to get -49.
5-\left(-\frac{1}{5}+\frac{5}{4}\times \frac{49}{30}-\frac{1}{6}\right)-\frac{2}{3}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{49}{30} is \frac{49}{30}.
5-\left(-\frac{1}{5}+\frac{5\times 49}{4\times 30}-\frac{1}{6}\right)-\frac{2}{3}
Multiply \frac{5}{4} times \frac{49}{30} by multiplying numerator times numerator and denominator times denominator.
5-\left(-\frac{1}{5}+\frac{245}{120}-\frac{1}{6}\right)-\frac{2}{3}
Do the multiplications in the fraction \frac{5\times 49}{4\times 30}.
5-\left(-\frac{1}{5}+\frac{49}{24}-\frac{1}{6}\right)-\frac{2}{3}
Reduce the fraction \frac{245}{120} to lowest terms by extracting and canceling out 5.
5-\left(-\frac{24}{120}+\frac{245}{120}-\frac{1}{6}\right)-\frac{2}{3}
Least common multiple of 5 and 24 is 120. Convert -\frac{1}{5} and \frac{49}{24} to fractions with denominator 120.
5-\left(\frac{-24+245}{120}-\frac{1}{6}\right)-\frac{2}{3}
Since -\frac{24}{120} and \frac{245}{120} have the same denominator, add them by adding their numerators.
5-\left(\frac{221}{120}-\frac{1}{6}\right)-\frac{2}{3}
Add -24 and 245 to get 221.
5-\left(\frac{221}{120}-\frac{20}{120}\right)-\frac{2}{3}
Least common multiple of 120 and 6 is 120. Convert \frac{221}{120} and \frac{1}{6} to fractions with denominator 120.
5-\frac{221-20}{120}-\frac{2}{3}
Since \frac{221}{120} and \frac{20}{120} have the same denominator, subtract them by subtracting their numerators.
5-\frac{201}{120}-\frac{2}{3}
Subtract 20 from 221 to get 201.
5-\frac{67}{40}-\frac{2}{3}
Reduce the fraction \frac{201}{120} to lowest terms by extracting and canceling out 3.
\frac{200}{40}-\frac{67}{40}-\frac{2}{3}
Convert 5 to fraction \frac{200}{40}.
\frac{200-67}{40}-\frac{2}{3}
Since \frac{200}{40} and \frac{67}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{133}{40}-\frac{2}{3}
Subtract 67 from 200 to get 133.
\frac{399}{120}-\frac{80}{120}
Least common multiple of 40 and 3 is 120. Convert \frac{133}{40} and \frac{2}{3} to fractions with denominator 120.
\frac{399-80}{120}
Since \frac{399}{120} and \frac{80}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{319}{120}
Subtract 80 from 399 to get 319.