Evaluate
\frac{191}{84}\approx 2.273809524
Factor
\frac{191}{2 ^ {2} \cdot 3 \cdot 7} = 2\frac{23}{84} = 2.2738095238095237
Share
Copied to clipboard
5-\left(\frac{3}{4}+\frac{4+1}{2}-\left(\frac{1}{2}+\frac{1}{6}-\frac{1}{7}\right)\right)
Multiply 2 and 2 to get 4.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{1}{2}+\frac{1}{6}-\frac{1}{7}\right)\right)
Add 4 and 1 to get 5.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{3}{6}+\frac{1}{6}-\frac{1}{7}\right)\right)
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{3+1}{6}-\frac{1}{7}\right)\right)
Since \frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{4}{6}-\frac{1}{7}\right)\right)
Add 3 and 1 to get 4.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{2}{3}-\frac{1}{7}\right)\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
5-\left(\frac{3}{4}+\frac{5}{2}-\left(\frac{14}{21}-\frac{3}{21}\right)\right)
Least common multiple of 3 and 7 is 21. Convert \frac{2}{3} and \frac{1}{7} to fractions with denominator 21.
5-\left(\frac{3}{4}+\frac{5}{2}-\frac{14-3}{21}\right)
Since \frac{14}{21} and \frac{3}{21} have the same denominator, subtract them by subtracting their numerators.
5-\left(\frac{3}{4}+\frac{5}{2}-\frac{11}{21}\right)
Subtract 3 from 14 to get 11.
5-\left(\frac{3}{4}+\frac{105}{42}-\frac{22}{42}\right)
Least common multiple of 2 and 21 is 42. Convert \frac{5}{2} and \frac{11}{21} to fractions with denominator 42.
5-\left(\frac{3}{4}+\frac{105-22}{42}\right)
Since \frac{105}{42} and \frac{22}{42} have the same denominator, subtract them by subtracting their numerators.
5-\left(\frac{3}{4}+\frac{83}{42}\right)
Subtract 22 from 105 to get 83.
5-\left(\frac{63}{84}+\frac{166}{84}\right)
Least common multiple of 4 and 42 is 84. Convert \frac{3}{4} and \frac{83}{42} to fractions with denominator 84.
5-\frac{63+166}{84}
Since \frac{63}{84} and \frac{166}{84} have the same denominator, add them by adding their numerators.
5-\frac{229}{84}
Add 63 and 166 to get 229.
\frac{420}{84}-\frac{229}{84}
Convert 5 to fraction \frac{420}{84}.
\frac{420-229}{84}
Since \frac{420}{84} and \frac{229}{84} have the same denominator, subtract them by subtracting their numerators.
\frac{191}{84}
Subtract 229 from 420 to get 191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}