Solve for x
x=\frac{5y-2}{43}
Solve for y
y=\frac{43x+2}{5}
Graph
Share
Copied to clipboard
5y-35x-8x=2
Use the distributive property to multiply 5 by y-7x.
5y-43x=2
Combine -35x and -8x to get -43x.
-43x=2-5y
Subtract 5y from both sides.
\frac{-43x}{-43}=\frac{2-5y}{-43}
Divide both sides by -43.
x=\frac{2-5y}{-43}
Dividing by -43 undoes the multiplication by -43.
x=\frac{5y-2}{43}
Divide 2-5y by -43.
5y-35x-8x=2
Use the distributive property to multiply 5 by y-7x.
5y-43x=2
Combine -35x and -8x to get -43x.
5y=2+43x
Add 43x to both sides.
5y=43x+2
The equation is in standard form.
\frac{5y}{5}=\frac{43x+2}{5}
Divide both sides by 5.
y=\frac{43x+2}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}