Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(y^{2}-4y+4\right)-8=37
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
5y^{2}-20y+20-8=37
Use the distributive property to multiply 5 by y^{2}-4y+4.
5y^{2}-20y+12=37
Subtract 8 from 20 to get 12.
5y^{2}-20y+12-37=0
Subtract 37 from both sides.
5y^{2}-20y-25=0
Subtract 37 from 12 to get -25.
y^{2}-4y-5=0
Divide both sides by 5.
a+b=-4 ab=1\left(-5\right)=-5
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by-5. To find a and b, set up a system to be solved.
a=-5 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(y^{2}-5y\right)+\left(y-5\right)
Rewrite y^{2}-4y-5 as \left(y^{2}-5y\right)+\left(y-5\right).
y\left(y-5\right)+y-5
Factor out y in y^{2}-5y.
\left(y-5\right)\left(y+1\right)
Factor out common term y-5 by using distributive property.
y=5 y=-1
To find equation solutions, solve y-5=0 and y+1=0.
5\left(y^{2}-4y+4\right)-8=37
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
5y^{2}-20y+20-8=37
Use the distributive property to multiply 5 by y^{2}-4y+4.
5y^{2}-20y+12=37
Subtract 8 from 20 to get 12.
5y^{2}-20y+12-37=0
Subtract 37 from both sides.
5y^{2}-20y-25=0
Subtract 37 from 12 to get -25.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 5\left(-25\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -20 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-20\right)±\sqrt{400-4\times 5\left(-25\right)}}{2\times 5}
Square -20.
y=\frac{-\left(-20\right)±\sqrt{400-20\left(-25\right)}}{2\times 5}
Multiply -4 times 5.
y=\frac{-\left(-20\right)±\sqrt{400+500}}{2\times 5}
Multiply -20 times -25.
y=\frac{-\left(-20\right)±\sqrt{900}}{2\times 5}
Add 400 to 500.
y=\frac{-\left(-20\right)±30}{2\times 5}
Take the square root of 900.
y=\frac{20±30}{2\times 5}
The opposite of -20 is 20.
y=\frac{20±30}{10}
Multiply 2 times 5.
y=\frac{50}{10}
Now solve the equation y=\frac{20±30}{10} when ± is plus. Add 20 to 30.
y=5
Divide 50 by 10.
y=-\frac{10}{10}
Now solve the equation y=\frac{20±30}{10} when ± is minus. Subtract 30 from 20.
y=-1
Divide -10 by 10.
y=5 y=-1
The equation is now solved.
5\left(y^{2}-4y+4\right)-8=37
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
5y^{2}-20y+20-8=37
Use the distributive property to multiply 5 by y^{2}-4y+4.
5y^{2}-20y+12=37
Subtract 8 from 20 to get 12.
5y^{2}-20y=37-12
Subtract 12 from both sides.
5y^{2}-20y=25
Subtract 12 from 37 to get 25.
\frac{5y^{2}-20y}{5}=\frac{25}{5}
Divide both sides by 5.
y^{2}+\left(-\frac{20}{5}\right)y=\frac{25}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}-4y=\frac{25}{5}
Divide -20 by 5.
y^{2}-4y=5
Divide 25 by 5.
y^{2}-4y+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-4y+4=5+4
Square -2.
y^{2}-4y+4=9
Add 5 to 4.
\left(y-2\right)^{2}=9
Factor y^{2}-4y+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
y-2=3 y-2=-3
Simplify.
y=5 y=-1
Add 2 to both sides of the equation.