Solve for y
y=\frac{1}{5}=0.2
Graph
Share
Copied to clipboard
5y+5\left(-\frac{1}{5}\right)-2\left(6+y\right)=3\left(4y-5\right)+y
Use the distributive property to multiply 5 by y-\frac{1}{5}.
5y-1-2\left(6+y\right)=3\left(4y-5\right)+y
Cancel out 5 and 5.
5y-1-12-2y=3\left(4y-5\right)+y
Use the distributive property to multiply -2 by 6+y.
5y-13-2y=3\left(4y-5\right)+y
Subtract 12 from -1 to get -13.
3y-13=3\left(4y-5\right)+y
Combine 5y and -2y to get 3y.
3y-13=12y-15+y
Use the distributive property to multiply 3 by 4y-5.
3y-13=13y-15
Combine 12y and y to get 13y.
3y-13-13y=-15
Subtract 13y from both sides.
-10y-13=-15
Combine 3y and -13y to get -10y.
-10y=-15+13
Add 13 to both sides.
-10y=-2
Add -15 and 13 to get -2.
y=\frac{-2}{-10}
Divide both sides by -10.
y=\frac{1}{5}
Reduce the fraction \frac{-2}{-10} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}