Solve for a
a=\frac{3b-19}{5}
Solve for b
b=\frac{5a+19}{3}
Share
Copied to clipboard
5y+5a+3\left(y-b\right)=8y-19
Use the distributive property to multiply 5 by y+a.
5y+5a+3y-3b=8y-19
Use the distributive property to multiply 3 by y-b.
8y+5a-3b=8y-19
Combine 5y and 3y to get 8y.
5a-3b=8y-19-8y
Subtract 8y from both sides.
5a-3b=-19
Combine 8y and -8y to get 0.
5a=-19+3b
Add 3b to both sides.
5a=3b-19
The equation is in standard form.
\frac{5a}{5}=\frac{3b-19}{5}
Divide both sides by 5.
a=\frac{3b-19}{5}
Dividing by 5 undoes the multiplication by 5.
5y+5a+3\left(y-b\right)=8y-19
Use the distributive property to multiply 5 by y+a.
5y+5a+3y-3b=8y-19
Use the distributive property to multiply 3 by y-b.
8y+5a-3b=8y-19
Combine 5y and 3y to get 8y.
5a-3b=8y-19-8y
Subtract 8y from both sides.
5a-3b=-19
Combine 8y and -8y to get 0.
-3b=-19-5a
Subtract 5a from both sides.
-3b=-5a-19
The equation is in standard form.
\frac{-3b}{-3}=\frac{-5a-19}{-3}
Divide both sides by -3.
b=\frac{-5a-19}{-3}
Dividing by -3 undoes the multiplication by -3.
b=\frac{5a+19}{3}
Divide -19-5a by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}