Solve for x (complex solution)
x=\frac{\sqrt{m}}{2}-\frac{29}{4}
Solve for m
m=\frac{\left(4x+29\right)^{2}}{4}
2x+\frac{29}{2}\geq 0
Solve for x
x=\frac{\sqrt{m}}{2}-\frac{29}{4}
m\geq 0
Solve for m (complex solution)
m=\frac{\left(4x+29\right)^{2}}{4}
x=-\frac{29}{4}\text{ or }arg(2x+\frac{29}{2})<\pi
Graph
Share
Copied to clipboard
5x+25+4=x+2\sqrt{m}
Use the distributive property to multiply 5 by x+5.
5x+29=x+2\sqrt{m}
Add 25 and 4 to get 29.
5x+29-x=2\sqrt{m}
Subtract x from both sides.
4x+29=2\sqrt{m}
Combine 5x and -x to get 4x.
4x=2\sqrt{m}-29
Subtract 29 from both sides.
\frac{4x}{4}=\frac{2\sqrt{m}-29}{4}
Divide both sides by 4.
x=\frac{2\sqrt{m}-29}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{\sqrt{m}}{2}-\frac{29}{4}
Divide 2\sqrt{m}-29 by 4.
5x+25+4=x+2\sqrt{m}
Use the distributive property to multiply 5 by x+5.
5x+29=x+2\sqrt{m}
Add 25 and 4 to get 29.
x+2\sqrt{m}=5x+29
Swap sides so that all variable terms are on the left hand side.
2\sqrt{m}=5x+29-x
Subtract x from both sides.
2\sqrt{m}=4x+29
Combine 5x and -x to get 4x.
\frac{2\sqrt{m}}{2}=\frac{4x+29}{2}
Divide both sides by 2.
\sqrt{m}=\frac{4x+29}{2}
Dividing by 2 undoes the multiplication by 2.
\sqrt{m}=2x+\frac{29}{2}
Divide 4x+29 by 2.
m=\frac{\left(4x+29\right)^{2}}{4}
Square both sides of the equation.
5x+25+4=x+2\sqrt{m}
Use the distributive property to multiply 5 by x+5.
5x+29=x+2\sqrt{m}
Add 25 and 4 to get 29.
5x+29-x=2\sqrt{m}
Subtract x from both sides.
4x+29=2\sqrt{m}
Combine 5x and -x to get 4x.
4x=2\sqrt{m}-29
Subtract 29 from both sides.
\frac{4x}{4}=\frac{2\sqrt{m}-29}{4}
Divide both sides by 4.
x=\frac{2\sqrt{m}-29}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{\sqrt{m}}{2}-\frac{29}{4}
Divide 2\sqrt{m}-29 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}