Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(x^{2}+6x+9\right)-3x^{2}=335
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
5x^{2}+30x+45-3x^{2}=335
Use the distributive property to multiply 5 by x^{2}+6x+9.
2x^{2}+30x+45=335
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}+30x+45-335=0
Subtract 335 from both sides.
2x^{2}+30x-290=0
Subtract 335 from 45 to get -290.
x=\frac{-30±\sqrt{30^{2}-4\times 2\left(-290\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 30 for b, and -290 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 2\left(-290\right)}}{2\times 2}
Square 30.
x=\frac{-30±\sqrt{900-8\left(-290\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-30±\sqrt{900+2320}}{2\times 2}
Multiply -8 times -290.
x=\frac{-30±\sqrt{3220}}{2\times 2}
Add 900 to 2320.
x=\frac{-30±2\sqrt{805}}{2\times 2}
Take the square root of 3220.
x=\frac{-30±2\sqrt{805}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{805}-30}{4}
Now solve the equation x=\frac{-30±2\sqrt{805}}{4} when ± is plus. Add -30 to 2\sqrt{805}.
x=\frac{\sqrt{805}-15}{2}
Divide -30+2\sqrt{805} by 4.
x=\frac{-2\sqrt{805}-30}{4}
Now solve the equation x=\frac{-30±2\sqrt{805}}{4} when ± is minus. Subtract 2\sqrt{805} from -30.
x=\frac{-\sqrt{805}-15}{2}
Divide -30-2\sqrt{805} by 4.
x=\frac{\sqrt{805}-15}{2} x=\frac{-\sqrt{805}-15}{2}
The equation is now solved.
5\left(x^{2}+6x+9\right)-3x^{2}=335
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
5x^{2}+30x+45-3x^{2}=335
Use the distributive property to multiply 5 by x^{2}+6x+9.
2x^{2}+30x+45=335
Combine 5x^{2} and -3x^{2} to get 2x^{2}.
2x^{2}+30x=335-45
Subtract 45 from both sides.
2x^{2}+30x=290
Subtract 45 from 335 to get 290.
\frac{2x^{2}+30x}{2}=\frac{290}{2}
Divide both sides by 2.
x^{2}+\frac{30}{2}x=\frac{290}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+15x=\frac{290}{2}
Divide 30 by 2.
x^{2}+15x=145
Divide 290 by 2.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=145+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=145+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{805}{4}
Add 145 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{805}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{805}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{\sqrt{805}}{2} x+\frac{15}{2}=-\frac{\sqrt{805}}{2}
Simplify.
x=\frac{\sqrt{805}-15}{2} x=\frac{-\sqrt{805}-15}{2}
Subtract \frac{15}{2} from both sides of the equation.