Solve for x
x=\frac{3y}{2}+7
Solve for y
y=\frac{2\left(x-7\right)}{3}
Graph
Share
Copied to clipboard
5x+10y-\left(3x+13y\right)=14
Use the distributive property to multiply 5 by x+2y.
5x+10y-3x-13y=14
To find the opposite of 3x+13y, find the opposite of each term.
2x+10y-13y=14
Combine 5x and -3x to get 2x.
2x-3y=14
Combine 10y and -13y to get -3y.
2x=14+3y
Add 3y to both sides.
2x=3y+14
The equation is in standard form.
\frac{2x}{2}=\frac{3y+14}{2}
Divide both sides by 2.
x=\frac{3y+14}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{3y}{2}+7
Divide 14+3y by 2.
5x+10y-\left(3x+13y\right)=14
Use the distributive property to multiply 5 by x+2y.
5x+10y-3x-13y=14
To find the opposite of 3x+13y, find the opposite of each term.
2x+10y-13y=14
Combine 5x and -3x to get 2x.
2x-3y=14
Combine 10y and -13y to get -3y.
-3y=14-2x
Subtract 2x from both sides.
\frac{-3y}{-3}=\frac{14-2x}{-3}
Divide both sides by -3.
y=\frac{14-2x}{-3}
Dividing by -3 undoes the multiplication by -3.
y=\frac{2x-14}{3}
Divide 14-2x by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}