Solve for x
x>\frac{10}{7}
Graph
Share
Copied to clipboard
5x+10-4\left(x-6\right)<8\left(x+3\right)
Use the distributive property to multiply 5 by x+2.
5x+10-4x+24<8\left(x+3\right)
Use the distributive property to multiply -4 by x-6.
x+10+24<8\left(x+3\right)
Combine 5x and -4x to get x.
x+34<8\left(x+3\right)
Add 10 and 24 to get 34.
x+34<8x+24
Use the distributive property to multiply 8 by x+3.
x+34-8x<24
Subtract 8x from both sides.
-7x+34<24
Combine x and -8x to get -7x.
-7x<24-34
Subtract 34 from both sides.
-7x<-10
Subtract 34 from 24 to get -10.
x>\frac{-10}{-7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
x>\frac{10}{7}
Fraction \frac{-10}{-7} can be simplified to \frac{10}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}