5 ( x + 1,5 ) ^ { 2 } - 7 = 0
Solve for x
x=\frac{\sqrt{35}}{5}-1,5\approx -0.316784043
x=-\frac{\sqrt{35}}{5}-1,5\approx -2.683215957
Graph
Share
Copied to clipboard
5\left(x+1,5\right)^{2}-7+7=7
Add 7 to both sides of the equation.
5\left(x+1,5\right)^{2}=7
Subtracting 7 from itself leaves 0.
\frac{5\left(x+1,5\right)^{2}}{5}=\frac{7}{5}
Divide both sides by 5.
\left(x+1,5\right)^{2}=\frac{7}{5}
Dividing by 5 undoes the multiplication by 5.
x+1,5=\frac{\sqrt{35}}{5} x+1,5=-\frac{\sqrt{35}}{5}
Take the square root of both sides of the equation.
x+1,5-1,5=\frac{\sqrt{35}}{5}-1,5 x+1,5-1,5=-\frac{\sqrt{35}}{5}-1,5
Subtract 1,5 from both sides of the equation.
x=\frac{\sqrt{35}}{5}-1,5 x=-\frac{\sqrt{35}}{5}-1,5
Subtracting 1,5 from itself leaves 0.
x=\frac{\sqrt{35}}{5}-\frac{3}{2}
Subtract 1,5 from \frac{\sqrt{35}}{5}.
x=-\frac{\sqrt{35}}{5}-\frac{3}{2}
Subtract 1,5 from -\frac{\sqrt{35}}{5}.
x=\frac{\sqrt{35}}{5}-\frac{3}{2} x=-\frac{\sqrt{35}}{5}-\frac{3}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}