Solve for x
x=\frac{1}{6}\approx 0.166666667
Graph
Share
Copied to clipboard
5\left(x+\frac{3}{10}\right)=14x
Reduce the fraction \frac{18}{60} to lowest terms by extracting and canceling out 6.
5x+5\times \frac{3}{10}=14x
Use the distributive property to multiply 5 by x+\frac{3}{10}.
5x+\frac{5\times 3}{10}=14x
Express 5\times \frac{3}{10} as a single fraction.
5x+\frac{15}{10}=14x
Multiply 5 and 3 to get 15.
5x+\frac{3}{2}=14x
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
5x+\frac{3}{2}-14x=0
Subtract 14x from both sides.
-9x+\frac{3}{2}=0
Combine 5x and -14x to get -9x.
-9x=-\frac{3}{2}
Subtract \frac{3}{2} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{3}{2}}{-9}
Divide both sides by -9.
x=\frac{-3}{2\left(-9\right)}
Express \frac{-\frac{3}{2}}{-9} as a single fraction.
x=\frac{-3}{-18}
Multiply 2 and -9 to get -18.
x=\frac{1}{6}
Reduce the fraction \frac{-3}{-18} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}