Solve for t
t = \frac{3 \sqrt{17} + 5}{16} \approx 1.085582305
t=\frac{5-3\sqrt{17}}{16}\approx -0.460582305
Share
Copied to clipboard
5t=8t^{2}-4
Combine 7t^{2} and t^{2} to get 8t^{2}.
5t-8t^{2}=-4
Subtract 8t^{2} from both sides.
5t-8t^{2}+4=0
Add 4 to both sides.
-8t^{2}+5t+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-5±\sqrt{5^{2}-4\left(-8\right)\times 4}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 5 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-5±\sqrt{25-4\left(-8\right)\times 4}}{2\left(-8\right)}
Square 5.
t=\frac{-5±\sqrt{25+32\times 4}}{2\left(-8\right)}
Multiply -4 times -8.
t=\frac{-5±\sqrt{25+128}}{2\left(-8\right)}
Multiply 32 times 4.
t=\frac{-5±\sqrt{153}}{2\left(-8\right)}
Add 25 to 128.
t=\frac{-5±3\sqrt{17}}{2\left(-8\right)}
Take the square root of 153.
t=\frac{-5±3\sqrt{17}}{-16}
Multiply 2 times -8.
t=\frac{3\sqrt{17}-5}{-16}
Now solve the equation t=\frac{-5±3\sqrt{17}}{-16} when ± is plus. Add -5 to 3\sqrt{17}.
t=\frac{5-3\sqrt{17}}{16}
Divide -5+3\sqrt{17} by -16.
t=\frac{-3\sqrt{17}-5}{-16}
Now solve the equation t=\frac{-5±3\sqrt{17}}{-16} when ± is minus. Subtract 3\sqrt{17} from -5.
t=\frac{3\sqrt{17}+5}{16}
Divide -5-3\sqrt{17} by -16.
t=\frac{5-3\sqrt{17}}{16} t=\frac{3\sqrt{17}+5}{16}
The equation is now solved.
5t=8t^{2}-4
Combine 7t^{2} and t^{2} to get 8t^{2}.
5t-8t^{2}=-4
Subtract 8t^{2} from both sides.
-8t^{2}+5t=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8t^{2}+5t}{-8}=-\frac{4}{-8}
Divide both sides by -8.
t^{2}+\frac{5}{-8}t=-\frac{4}{-8}
Dividing by -8 undoes the multiplication by -8.
t^{2}-\frac{5}{8}t=-\frac{4}{-8}
Divide 5 by -8.
t^{2}-\frac{5}{8}t=\frac{1}{2}
Reduce the fraction \frac{-4}{-8} to lowest terms by extracting and canceling out 4.
t^{2}-\frac{5}{8}t+\left(-\frac{5}{16}\right)^{2}=\frac{1}{2}+\left(-\frac{5}{16}\right)^{2}
Divide -\frac{5}{8}, the coefficient of the x term, by 2 to get -\frac{5}{16}. Then add the square of -\frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5}{8}t+\frac{25}{256}=\frac{1}{2}+\frac{25}{256}
Square -\frac{5}{16} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{5}{8}t+\frac{25}{256}=\frac{153}{256}
Add \frac{1}{2} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{16}\right)^{2}=\frac{153}{256}
Factor t^{2}-\frac{5}{8}t+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{16}\right)^{2}}=\sqrt{\frac{153}{256}}
Take the square root of both sides of the equation.
t-\frac{5}{16}=\frac{3\sqrt{17}}{16} t-\frac{5}{16}=-\frac{3\sqrt{17}}{16}
Simplify.
t=\frac{3\sqrt{17}+5}{16} t=\frac{5-3\sqrt{17}}{16}
Add \frac{5}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}